New York Methodist Hospital
Proposed Ambulatory Care Facility
BROOKLYN, NEW YORK

Subsurface (Phase II) Investigation
Sampling Protocol and Health and Safety Plan
CEQR # 14BSA057K

AKRF Project Number: 11694

Prepared for:
New York Methodist Hospital
506 6th Street
Brooklyn, NY 11215
&
Washington Square Partners
675 Third Avenue, 25th Floor
New York, NY 10017

Prepared by:

AKRF

AKRF, Inc.
440 Park Avenue South, 7th Floor
New York, NY 10016
212-696-0670

FEBRUARY 2014
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
1.1 Site Characterization.. 1
1.2 Proposed Project .. 1
1.3 Site History .. 2
1.4 Previous Environmental Investigations ... 2
2.0 SCOPE OF WORK.. 2
 2.1 Geophysical Survey .. 3
 2.2 Borings .. 3
 2.3 Soil Sampling .. 4
 2.4 Soil Gas Sampling ... 4
3.0 QUALITY ASSURANCE/QUALITY CONTROL PLAN ... 5
 3.1 Laboratory Methods .. 5
 3.2 Field Quality Control Sampling .. 5
 3.3 Sample Custody .. 5
 3.4 Field Decontamination Procedures .. 6
4.0 REPORT .. 6

FIGURES

Figure 1 – Project Site Location
Figure 2 – Project Site Detail

APPENDICES

Appendix A – Health and Safety Plan
1.0 INTRODUCTION

This Sampling Protocol provides a scope of work for conducting a Subsurface (Phase II) Investigation at the New York Methodist Hospital (NYM) Proposed Ambulatory Care Facility Site (the “Site”) consisting of portions of the block bounded by Seventh and Eighth Avenues and 5th and 6th Streets in Brooklyn (Tax Block 1084, Lots 25, 26, 28, 39-44, 46, 48, 50-59, and a portion of Lot 7501). A Site location map is provided as Figure 1. A plan showing the proposed sampling locations is provided as Figure 2. The Site currently includes: fourteen, three to four-story buildings with basements occupied by residential, office and medical office uses; three vacant three-story former apartment buildings with two basement levels; part of a parking garage with three basement levels and a rooftop/ground-level parking deck; and a surface parking lot.

This scope of work is intended to assess the potential for encountering hazardous materials during excavation that would be associated with the proposed construction of a new ambulatory care facility. The scope is based on the findings, described in Section 1.4, of AKRF’s October 2013 Phase I Environmental Site Assessment (ESA). The scope of this Sampling Protocol includes a geophysical survey and the collection of soil and soil gas samples for laboratory analysis. Groundwater is not anticipated to be encountered during the investigation. A Health and Safety Plan (HASP) (Appendix A) is included to provide measures for protecting on-site personnel and the public during the implementation of the Sampling Protocol.

1.1 Site Characterization

Based on U.S. Geological Survey mapping, the Site lies at an elevation of approximately 115 to 130 feet above the National Geodetic Vertical Datum (NGVD) of 1929, an approximation of mean sea level, with the ground sloping down to the west. A geotechnical study (Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C., July 2013) advanced borings up to approximately 100 feet deep on the Site and further west on the same block. This study indicated that the Site is underlain by a layer of fill (sand, gravel, silt, brick, and cobbles or boulders) approximately 10 to 15 feet thick, which is in turn underlain by native soils (glacial till, some silt and clay). Based on USGS mapping, bedrock is anticipated approximately 300 feet below grade.

Groundwater was not encountered during the geotechnical study, and is anticipated to be first encountered at approximately 90 to 130 feet below grade based on USGS mapping. Groundwater most likely flows toward the Gowanus Canal or Bay approximately one mile to the west. However, actual groundwater flow beneath the Site can be affected by many factors. Groundwater in Brooklyn is not generally used as a source of potable water, and where used requires treatment.

1.2 Proposed Project

The proposed project entails demolition of all existing on-site buildings except the parking garage. The demolition would be followed by excavation to approximately 80 feet NGVD (i.e., approximately 50 feet below street grade at the eastern end of the Site, and approximately 35 feet below grade at the western end of the Site) for construction of a new ambulatory care facility with three levels below grade.

The existing buildings’ foundation slabs are generally above the proposed depth of excavation; however, the foundation slab of the existing parking garage is approximately four feet below the proposed depth of excavation. No excavation will occur in the existing garage (part of the proposed building will be constructed above the garage). Based on the anticipated depth to groundwater, dewatering is not likely to be required for the proposed construction.
1.3 Site History

Most existing on-site buildings were constructed between 1888 and 1906 and were predominantly residential, with some store and office uses. Historical dwellings at the locations of the existing parking lot and garage were demolished by 1979. The parking garage was constructed in approximately 1997.

1.4 Previous Environmental Investigations

The Phase I ESA reviewed a variety of sources including: current and historical Sanborn Fire Insurance maps, aerial photographs and topographical maps; and state and federal environmental regulatory databases. It also included reconnaissance of the Site and its surroundings. The Phase I ESA identified the following:

- NYC Buildings Department (DOB) records listed a historical medical laboratory on Lot 57 (see Figure 2 for lot locations). DOB records also listed oil burner applications and/or fuel oil installation approvals for Lots 25, 39, 40, 42, 43, 44, 46, 48 and 59. An abandoned, approximately 275-gallon, fuel oil aboveground storage tank (AST) with no evidence of leakage was observed in the basement at Lot 43. No evidence of other aboveground or underground storage tanks was observed. The historical tanks associated with the DOB records may have been removed, or may remain either in basement areas that were inaccessible during the reconnaissance or beneath the buildings.

- The surrounding area has been predominantly residential since the early 20th century. A cleaner/dyer and paint shops were historically located west of the Site on the same block. The south-adjacent block has been occupied by New York Methodist Hospital (NYM) since prior to 1888. The hospital and a school on the north-adjacent block, identified in the regulatory database as generators of hazardous waste and petroleum bulk storage (PBS) facilities, have some potential to affect subsurface conditions beneath the Site. Closed-status petroleum spills and open violations associated with hazardous waste generation were reported for NYM.

- Small quantities of paints, cleaning and maintenance chemicals were stored in on-site basements. The observed chemicals were generally neatly stored and labeled, with no odors or staining noted. A 55-gallon plastic drum labeled “corrosive” (likely containing boiler treatment chemicals) was observed in the boiler room of 505 6th Street on Lot 59. NYM representatives indicated that small quantities of chemicals (disinfectants, etc.) were stored at on-site medical offices. Small quantities of radioactive materials were used at the MRI/Radiology center on Lot 54, but were generally stored at the main NYM campus. Any chemicals or radioactive materials requiring disposal were collected at the main NYM campus for pickup by private contractors.

2.0 SCOPE OF WORK

Field work will be conducted under the site-specific Health and Safety Plan (Appendix A). The scope consists of a geophysical survey and the collection of soil and soil gas samples for laboratory analysis. Eight borings will be advanced at the Site for soil sampling. Six borings will be advanced for soil gas sampling. Groundwater is not anticipated to be encountered during the investigation.
2.1 Geophysical Survey

A geophysical survey will be conducted in the outdoor portion of the Site and at the proposed indoor boring locations to investigate the potential presence of underground storage tanks (USTs) and reduce the likelihood of encountering subsurface utilities during the investigation. This will comprise a ground-penetrating radar (GPR) survey and a magnetometer survey. GPR uses electromagnetic wave propagation and scattering to image and identify changes in electrical and magnetic properties in the ground. The magnetometer survey works on the premise that the subsurface has a relatively static magnetic field, and certain forces interrupt that field. Both systems are widely used for locating underground utility lines, USTs, and other subsurface metallic structures.

2.2 Borings

A hollow-stem auger (HSA) rig or truck-mounted Geoprobe® direct push rig will be used to advance three borings in the on-site parking lot to the anticipated maximum depth of excavation (approximately 50 feet below grade).

A remote-access Geoprobe® direct push rig will be used to advance five borings in the on-site parking garage and various accessible building basements. The boring in the parking garage will be advanced to approximately four feet below grade. The other indoor borings will be advanced to the maximum depth achievable. Groundwater is not anticipated to be encountered, even in the deeper borings.

The approximate boring locations are shown on Figure 2. The proposed boring locations and rationale are summarized in the following table. No sampling is proposed in buildings on Lots 39 through 43, which have unlighted or poorly lighted basements; the buildings on Lots 40 through 43 are generally dilapidated and unsafe for access with heavy equipment. Locations will be finalized in the field based on any geophysical survey findings, access considerations and utility markouts. Utility markouts will be requested from the New York City/Long Island One Call Center prior to the commencement of drilling.

<table>
<thead>
<tr>
<th>Boring Tax Lot</th>
<th>Location</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>7501</td>
<td>Northwestern corner of the Site / existing parking garage</td>
<td>Assess potential impact from historical off-site uses to the west</td>
</tr>
<tr>
<td>25</td>
<td>North side of the Site</td>
<td>Historical petroleum use at this lot; assess potential impact from off-site school to the north</td>
</tr>
<tr>
<td>44</td>
<td>East side of the Site</td>
<td>Historical petroleum use at this lot and lots to the north (which are inaccessible for testing due to building conditions)</td>
</tr>
<tr>
<td>46</td>
<td>East side of the Site</td>
<td>Historical petroleum use at this lot</td>
</tr>
<tr>
<td>48</td>
<td>Southeastern corner of the Site</td>
<td>Historical petroleum use at this lot; assess potential impact from off-site hospital to the south</td>
</tr>
<tr>
<td>51</td>
<td>South side of the Site</td>
<td>Historical petroleum use at Site lots to the east; assess potential impact from off-site hospital to the south</td>
</tr>
<tr>
<td>54</td>
<td>South side of the Site</td>
<td>Historical petroleum use at inaccessible Site lots to the east; assess potential impact from off-site hospital to the south</td>
</tr>
<tr>
<td>Boring Tax Lot</td>
<td>Location</td>
<td>Rationale</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>57</td>
<td>South side of the Site</td>
<td>Historical laboratory on this lot; assess potential impact from off-site hospital to the south</td>
</tr>
<tr>
<td>59</td>
<td>South side of the Site</td>
<td>Historical petroleum use at this lot; assess potential impact from off-site hospital to the south</td>
</tr>
</tbody>
</table>

2.3 **Soil Sampling**

Soil cores will be collected using a stainless steel, macro-core sampler with internal acetate liners. The cores will be field-screened using a photoionization detector (PID) to measure relative concentrations of volatile organic compounds (VOCs) in the soil. AKRF field personnel will record and document subsurface conditions. One soil sample will be collected from the four foot-deep boring to be advanced in the existing garage. Two soil samples will be chosen from each of the remaining borings for laboratory analysis, based on any field observations (e.g., odor and staining) and/or PID readings. If no evidence of contamination (visual, odor or PID readings) is apparent, one soil sample will be collected from the top two feet of the boring and one soil sample will be collected from the bottom of the boring.

Samples slated for analysis will be placed in laboratory-supplied containers and shipped in coolers in accordance with EPA protocols to a New York State Department of Health (NYSDOH) ELAP-certified laboratory. Soil samples will be analyzed for Target Compound List (TCL) VOCs by EPA Method 8260, TCL semi-volatile organic compounds (SVOCs) by EPA Method 8270, polychlorinated biphenyls (PCBs) by EPA Method 8082, pesticides by EPA Method 8081, and Target Analyte List (TAL) metals.

2.4 **Soil Gas Sampling**

Six soil gas samples will be collected from the Site. The soil gas probes will be installed by advancing an expendable drive point using a Geoprobe rig to a depth of approximately 50 feet below grade (in outdoor areas), directly below the foundation slab (in the existing garage), or the maximum depth achievable (in other indoor areas). The approximate boring locations are shown on Figure 2. Locations will be finalized in the field based on any geophysical survey findings, access considerations and utility markouts. Following installation, the drive point will be retracted approximately 12 inches to create a void space.

A six-inch stainless steel screen implant with connected Teflon tubing will be installed through the Geoprobe rods and threaded into the drive point. The sampling tubing will extend from the end of the screen to above grade. The push probe rods will then be removed and the boring will be backfilled with clean silica sand to one foot above the screen. Hydrated bentonite will be used to fill the remaining void around the sampling tubing to ground surface.

Prior to sample collection, purging of three sampler volumes will be conducted using a peristaltic pump. During purging, an inverted five-gallon bucket will be placed over the sampling point and helium gas will be introduced through a small hole in the bucket to saturate the atmosphere around the sample port with helium gas. Purged vapors will be collected into a Tedlar bag and field-screened for organic vapors using a PID. The purged air will also be monitored using a portable helium detector to check for short-circuiting of ambient air into the vapor sampling point. If the purged soil gas contains greater than 10% helium, additional bentonite will be used to enhance the surface seal, and the point will be retested.
Following purging, a soil gas sample for laboratory analysis will be collected in a six-liter SUMMA canister equipped with vacuum gauge and flow controller calibrated for a one-hour sampling period. Vacuum readings will be collected at the start and end of the sampling period.

The Summa canisters will be labeled, sealed, and shipped to a NYSDOH ELAP-certified laboratory. The soil gas samples will be analyzed for VOCs by EPA Method TO-15.

3.0 QUALITY ASSURANCE/QUALITY CONTROL PLAN

3.1 Laboratory Methods

A New York State-certified laboratory will perform all analytical work. The laboratory will operate a Quality Assurance/Quality Control (QA/QC) program that will consist of proper laboratory practices (including the required chain-of-custody), an internal quality control program, and external quality control audits by New York State.

3.2 Field Quality Control Sampling

For QA/QC purposes, three trip blanks (one for each anticipated day of soil sampling) will be sent with the collected samples for laboratory analysis. The trip blanks would be analyzed only for VOCs by EPA Method 8260 to check for contamination during transport and sampling procedures.

3.3 Sample Custody

To ensure the integrity of samples taken, a strict chain of custody record must be maintained on each sample. This begins after sampling with the entry in the sampler's field log book of the sampling details:

a) Date and time of sampling;
b) Sample location (as specific as possible);
c) The unique sample number, size, and container(s) used;
d) Sample description;
e) Weather conditions (if applicable); and
f) Any additional comments.

In addition, a record must be kept of the sample's progress from the sample site to the laboratory where it will be analyzed. This is the chain-of-custody form. The form must include:

a) The sample number;
b) The sampler's name;
c) Date and time of sampling;
d) Location at which the sample was taken, including the address, if possible;
e) A description of the sample, as best known;
f) Signatures of people involved in the chain of possession; and

g) Inclusive dates of possession of each person in the chain.
The chain-of-custody form must accompany the sample throughout its trip to the laboratory. If the sample(s) must be shipped to a laboratory, most shipping agents will refuse to sign or separately carry the chain-of-custody form. In this one case, it is permissible to put the chain-of-custody form into the box with the sample and then seal the box. The recipient of the box, the laboratory's sample custodian, can then attest to the box's arrival still sealed and unopened.

Accompanying the chain-of-custody record, or included in it, must be a request to the laboratory for sample analyses. Information required includes:

a) Name of person receiving the sample;
b) Laboratory sample number;
c) Date of sample receipt;
d) Sample allocation; and
e) Analyses to be performed.

Finally, on arrival at the laboratory, the sample custodian must enter the sample in the laboratory's sample log book. The chain-of-custody should be kept on file at the laboratory.

3.4 Field Decontamination Procedures

To avoid contamination and cross-contamination of samples, all sampling equipment will be cleaned before collection of each sample. The following field procedures will be followed for all samples:

1. Scrub using tap water/Simple Green® mixture and bristle brush
2. Rinse with tap water.
4. Rinse with tap water.
5. Rinse with distilled water.
6. Air dry the equipment.

4.0 REPORT

A subsurface investigation report will be prepared following the completion of the sampling and analysis program and will be submitted to NYCDEP for approval. The report will describe field procedures and observations, include soil boring logs, a site plan showing sample locations, summarize analytical results, and discuss their significance. If soil and/or groundwater contamination is discovered, AKRF will provide recommendations for further action.
FIGURES
APPENDIX A

HEALTH AND SAFETY PLAN
New York Methodist Hospital
Proposed Ambulatory Care Facility
BROOKLYN, NEW YORK
Health and Safety Plan

CEQR # 14BSA057K

AKRF Project Number: 11694

Prepared for:
New York Methodist Hospital
506 6th Street
Brooklyn, NY 11215
&
Washington Square Partners
675 Third Avenue, 25th Floor
New York, NY 10017

Prepared by:
AKRF, Inc.
440 Park Avenue South, 7th Floor
New York, NY 10016
212-696-0670

FEBRUARY 2014
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
2.0 HEALTH AND SAFETY GUIDELINES AND PROCEDURES... 2
 2.1 Hazard Evaluation .. 2
 2.1.1 Hazards of Concern ... 2
 2.1.2 Physical Characteristics ... 2
 2.1.3 Hazardous Materials .. 2
 2.1.4 Chemicals of Concern .. 3
 2.2 Designated Personnel .. 3
 2.3 Training .. 3
 2.4 Medical Surveillance Program ... 4
 2.5 Site Work Zones ... 4
 2.6 Air Monitoring .. 4
 2.6.1 Volatile Organic Compounds ... 4
 2.6.2 Work Zone Air Monitoring .. 5
 2.7 Personal Protection Equipment ... 5
 2.8 General Work Practices ... 5
3.0 EMERGENCY PROCEDURES AND EMERGENCY RESPONSE PLAN.......................... 7
 3.1 HOSPITAL DIRECTIONS ... 7
 3.2 EMERGENCY CONTACTS .. 7
4.0 APPROVAL & ACKNOWLEDGMENTS OF HASP... 8

FIGURES

Figure 1 – Project Site Location and Nearest Hospital

APPENDICES

APPENDIX A – Potential Health Effects from On-site Contaminants
APPENDIX B – West Nile Virus/St. Louis Encephalitis Prevention
APPENDIX C – Report Forms
APPENDIX D – Emergency Hand Signals
1.0 INTRODUCTION

The project site (the “Site”) consists of portions of the block bounded by Seventh and Eighth Avenues and 5th and 6th Streets in Brooklyn (Tax Block 1084, Lots 25, 26, 28, 39-44, 46, 48, 50-59, and a portion of Lot 7501). The Site currently includes: fourteen, three to four-story buildings with basements occupied by residential, office and medical office uses; three vacant three-story former apartment buildings with two basement levels; part of a parking garage with three basement levels and a rooftop/ground-level parking deck; and a surface parking lot.

A Phase I Environmental Site Assessment (ESA) of the Site (AKRF, Inc., October 2013) identified potential sources of contamination, including: historical petroleum storage and an abandoned aboveground storage tank (AST) at the Site; a historical medical laboratory at the Site; and past and present uses of the surrounding area, including a cleaner/dyer and paint shops west of the Site on the same block, and a hospital on the south-adjacent block.

The subsurface investigation will include a geophysical survey and the collection of soil and soil gas samples. This environmental Health and Safety Plan (HASP) has been developed for implementation during site investigation activities conducted by all personnel on-site, both AKRF employees and others. This HASP does not discuss routine health and safety issues common to general construction/excavation, including but not limited to slips, trips, falls, shoring, and other physical hazards.

All AKRF employees are directed that all work must be performed in accordance with the Company's Generic HASP and all OSHA applicable regulations for the work activities required for the project. All project personnel are furthermore directed that they are not permitted to enter Permit Required Confined Spaces (as defined by OSHA). For issues unrelated to contaminated materials, all non-AKRF employees are to be bound by all applicable OSHA regulations as well as any more stringent requirements specified by their employer in their corporate HASP or otherwise. AKRF is not responsible for providing oversight for issues unrelated to contaminated materials for non-employees. This oversight shall be the responsibility of the employer of that worker or other official designated by that employer.
2.0 HEALTH AND SAFETY GUIDELINES AND PROCEDURES

2.1 Hazard Evaluation

2.1.1 Hazards of Concern

<table>
<thead>
<tr>
<th>Check all that apply</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemicals</td>
<td>Inorganic Chemicals</td>
<td>Radiological</td>
</tr>
<tr>
<td>Biological</td>
<td>Explosive/Flammable</td>
<td>Oxygen Deficient Atm</td>
</tr>
<tr>
<td>Heat Stress</td>
<td>Cold Stress</td>
<td>Carbon Monoxide</td>
</tr>
</tbody>
</table>

Comments:
No personnel are permitted to enter permit confined spaces.

2.1.2 Physical Characteristics

<table>
<thead>
<tr>
<th>Check all that apply</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Solid</td>
<td>Sludge</td>
</tr>
<tr>
<td>Vapors</td>
<td>Unknown</td>
<td>Other</td>
</tr>
</tbody>
</table>

Comments:

2.1.3 Hazardous Materials

<table>
<thead>
<tr>
<th>Check all that apply</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td>Solids</td>
<td>Sludges</td>
<td>Solvents</td>
<td>Oils</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Acids</td>
<td>Ash</td>
<td>Paints</td>
<td>Halogens</td>
<td>Transformer</td>
<td>Lab</td>
<td></td>
</tr>
<tr>
<td>Caustics</td>
<td>Asbestos</td>
<td>Metals</td>
<td>Petroleum</td>
<td>Other DF</td>
<td>Pharm</td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td>Tailings</td>
<td>POTW</td>
<td>Other</td>
<td>Motor or Hydraulic Oil</td>
<td>Hospital</td>
<td></td>
</tr>
<tr>
<td>Petroleum</td>
<td>Other</td>
<td>Other</td>
<td>Gasoline</td>
<td>Rad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inks</td>
<td>Fill material</td>
<td>(X) Fuel Oil</td>
<td>MGP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td></td>
<td></td>
<td>Mold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td>Cyanide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other: VOCs & SVOCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-2
2.1.4 Chemicals of Concern

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>REL/PEL/STEL</th>
<th>Health Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Oil</td>
<td>REL = 350 mg/m³ PEL = 400 ppm</td>
<td>Nausea, irritation – eyes, hypertension, headache, light-headedness, loss of appetite, poor coordination; long-term exposure – kidney damage, blood clotting problems; potential carcinogen.</td>
</tr>
<tr>
<td>Lead</td>
<td>REL = 0.1 mg/m³ PEL = 0.05 mg/m³</td>
<td>Weakness, lassitude, insomnia; facial pallor, pale eye, anorexia, low-weight, malnutrition, constipation, abdominal pain, colic; anemia; gingival lead line; tremors, paralysis wrists and ankles; encephalopathy; kidney disease; irritation eyes; hypotension.</td>
</tr>
<tr>
<td>Mercury</td>
<td>REL = 0.1 mg/m³ PEL = 0.05 mg/m³</td>
<td>Irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria.</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td>PEL = 5 mg/m³</td>
<td>Harmful effects to skin, bodily fluids, and ability to fight disease, reproductive problems; [potential occupational carcinogen]</td>
</tr>
<tr>
<td>Trichloroethylene (TCE)</td>
<td>REL = 25 ppm PEL = 100 ppm STEL = 200 ppm</td>
<td>Irritation eyes, skin; headache, visual disturbance, weakness, exhaustion, dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; potential occupational carcinogen</td>
</tr>
<tr>
<td>Tetrachloroethylene (PCE)</td>
<td>PEL = 100 ppm STEL = 200 ppm</td>
<td>Irritation eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, poor coordination; headache, drowsiness; skin erythema (skin redness); liver damage; potential occupational carcinogen</td>
</tr>
</tbody>
</table>

Comments:
REL = NIOSH Recommended Exposure Limit
PEL = OSHA Permissible Exposure Limit
STEL = OSHA Short Term Exposure Limit
ppm = parts per million
mg/m³ = milligrams per cubic meter

2.2 Designated Personnel

AKRF will appoint one of its on-site personnel as the Site Safety Officer (SSO). This individual will be responsible for the implementation of the HASP. The SSO will have a 4-year college degree in occupational safety or a related science/engineering field, and experience in implementation of air monitoring and hazardous materials sampling programs. Health and safety training required for the SSO and all field personnel are outlined in Section 2.3 of this HASP.

2.3 Training

All personnel who enter the work area while intrusive activities are being performed will have completed a 40-hour training course that meets OSHA requirements of 29 CFR Part 1910, Occupational Safety and Health Standards. In addition, all personnel will have up-to-date 8-hour refresher training. The training will allow personnel to recognize and understand the potential hazards to health and safety. All field personnel must attend a training program, whose purpose is to:

- Make them aware of the potential hazards they may encounter;
• Provide the knowledge and skills necessary for them to perform the work with minimal risk to health and safety;
• Make them aware of the purpose and limitations of safety equipment; and
• Ensure that they can safely avoid or escape from emergencies.

Each member of the field crew will be instructed in these objectives before he/she goes onto the Site. A site safety meeting will be conducted at the start of the project. Additional meetings shall be conducted, as necessary, for new personnel working at the Site.

2.4 Medical Surveillance Program

All AKRF and subcontractor personnel performing field work involving subsurface disturbance at the Site are required to have passed a complete medical surveillance examination in accordance with 29 CFR 1910.120 (f). A physician’s medical release for work will be confirmed by the SSO before an employee can begin site activities. The medical release shall consider the type of work to be performed and the required PPE. The medical examination will, at a minimum, be provided annually and upon termination of hazardous waste site work.

2.5 Site Work Zones

During any activities involving subsurface disturbance, the work area must be divided into various zones to prevent the spread of contamination, ensure that proper protective equipment is donned, and provide an area for decontamination.

The Exclusion Zone is defined as the area where exposure to impacted media could be encountered. The Contamination Reduction Zone (CRZ) is the area where decontamination procedures take place and is located next to the Exclusion Zone. The Support is the zone area where support facilities such as vehicles, fire extinguisher, and first aid supplies are located. The emergency staging area (part of the Support Zone) is the area where all workers on-site would assemble in the event of an emergency. A summary of these areas is provided below. These zones may changed by SSO, depending on that day’s activities. All field personnel will be informed of the location of these zones before work begins.

<table>
<thead>
<tr>
<th>Task</th>
<th>Exclusion Zone</th>
<th>CRZ</th>
<th>Support Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Borings</td>
<td>10 ft from drill rig</td>
<td>25 ft from drill rig</td>
<td>As Needed</td>
</tr>
</tbody>
</table>

Comments:
Control measures such as “caution tape” and/or traffic cones will be placed around the perimeter of the work area when work is being done in a public area.

2.6 Air Monitoring

The purpose of the air monitoring program is to identify any exposure of the field personnel to potential environmental hazards in the soil and groundwater. Results of the air monitoring will be used to determine the appropriate response action, if needed.

2.6.1 Volatile Organic Compounds

An organic vapor meter (OVM) will be used to perform air monitoring during soil disturbance activities to determine airborne levels of total VOCs. The OVM will be calibrated at the start of the work day with a 100 ppm isobutylene standard.
2.6.2 Work Zone Air Monitoring

Real time air monitoring will be performed with the OVM. Measurements will be taken prior to commencement of work and continuously during the work, as outlined in the following table. Measurements will be made as close to the workers as practicable and at the breathing height of the workers. The SSO shall set up the equipment and confirm that it is working properly. His/her designee may oversee the air measurements during the day. The initial measurement for the day will be performed before the start of work and will establish the background level for that day. The final measurement for the day will be performed after the end of work. The action levels and required responses are listed in the following table.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Action Level</th>
<th>Response Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVM</td>
<td>Less than 10 ppm in breathing zone</td>
<td>Level D or D-Modified</td>
</tr>
<tr>
<td></td>
<td>Between 10 ppm and 20 ppm</td>
<td>Level C</td>
</tr>
<tr>
<td></td>
<td>More than 20 ppm</td>
<td>Stop work. Resume work when readings are less then 20 ppm.</td>
</tr>
</tbody>
</table>

2.7 Personal Protection Equipment

The personal protection equipment required for various kinds of site investigation tasks are based on 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, Appendix B, “General Description and Discussion of the Levels of Protection and Protective Gear.”

AKRF field personnel and other site personnel shall wear, at a minimum, Level D personal protective equipment. The protection will be based on the air monitoring described in Section 2.6.

<table>
<thead>
<tr>
<th>LEVEL OF PROTECTION & PPE</th>
<th>Soil Boring/Water Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level D</td>
<td></td>
</tr>
<tr>
<td>(X) Steel Toe Shoes</td>
<td></td>
</tr>
<tr>
<td>(X) Hard Hat</td>
<td></td>
</tr>
<tr>
<td>(within 25 ft of drill rig)</td>
<td></td>
</tr>
<tr>
<td>(X) Work Gloves</td>
<td></td>
</tr>
<tr>
<td>(X) Safety Glasses</td>
<td>Yes</td>
</tr>
<tr>
<td>() Ear Plugs (within 25 ft of drill rig)</td>
<td></td>
</tr>
<tr>
<td>(X) Nitrile Gloves</td>
<td></td>
</tr>
<tr>
<td>(X) Tyvek for drill operator if NAPL present</td>
<td></td>
</tr>
<tr>
<td>Level C (in addition to Level D)</td>
<td></td>
</tr>
<tr>
<td>(X) Half-Face Respirator OR</td>
<td></td>
</tr>
<tr>
<td>(X) Full Face Respirator</td>
<td></td>
</tr>
<tr>
<td>() Full-Face PAPR</td>
<td></td>
</tr>
<tr>
<td>() Particulate Cartridge</td>
<td></td>
</tr>
<tr>
<td>() Organic Cartridge</td>
<td></td>
</tr>
<tr>
<td>(X) Dual Organic/Particulate Cartridge</td>
<td>If PID > 10 ppm (breathing zone)</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
</tr>
<tr>
<td>Cartridges to be changed out at least once per shift unless warranted beforehand (e.g., more difficult to breathe or any odors detected).</td>
<td></td>
</tr>
</tbody>
</table>

2.8 General Work Practices

To protect the health and safety of the field personnel, field personnel will adhere to the guidelines listed below during activities involving subsurface disturbance:
• Eating, drinking, chewing gum or tobacco, and smoking are prohibited, except in designated areas on the Site. These areas will be designated by the SSO.

• Workers must wash their hands thoroughly on leaving the work area and before eating, drinking, or any other such activity.

• The workers should shower as soon as possible after leaving the Site. Contact with contaminated or suspected surfaces should be avoided.

• The buddy system should always be used; each buddy should watch for signs of fatigue, exposure, and heat/cold stress.
3.0 EMERGENCY PROCEDURES AND EMERGENCY RESPONSE PLAN

The field crew will be equipped with emergency equipment, such as a first aid kit and disposable eye washes. In the case of a medical emergency, the SSO will determine the nature of the emergency and he/she will have someone call for an ambulance, if needed. If the nature of the injury is not serious, i.e., the person can be moved without expert emergency medical personnel, he/she should be taken to a hospital by on-site personnel. Directions to the hospital are provided below, and a hospital route map is attached.

3.1 HOSPITAL DIRECTIONS

<table>
<thead>
<tr>
<th>Hospital Name:</th>
<th>New York Methodist Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone Number:</td>
<td>(718) 780-3000</td>
</tr>
<tr>
<td>Address/Location:</td>
<td>506 6th Street – Brooklyn, New York</td>
</tr>
</tbody>
</table>
| Directions: | 1. Go WEST along 6th Street
2. The Emergency Entrance will be on the LEFT. |

3.2 EMERGENCY CONTACTS

<table>
<thead>
<tr>
<th>Company</th>
<th>Individual Name</th>
<th>Title</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKRF</td>
<td>Marcus Simons</td>
<td>Project Director</td>
<td>646-388-9527 (office)</td>
</tr>
<tr>
<td></td>
<td>Asya Bychkov</td>
<td>SSO</td>
<td>646-388-9533 (office)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>917-617-0921 (cell)</td>
</tr>
<tr>
<td>New York Methodist Hospital</td>
<td>Michael Chodrow</td>
<td>NYM Director of Facilities</td>
<td>718-780-3309 (office)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>347-419-2326 (cell)</td>
</tr>
<tr>
<td>Ambulance, Fire Department &</td>
<td></td>
<td></td>
<td>911</td>
</tr>
<tr>
<td>Police Department</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYSDEC Spill Hotline</td>
<td></td>
<td></td>
<td>800-457-7362</td>
</tr>
</tbody>
</table>
4.0 APPROVAL & ACKNOWLEDGMENTS OF HASP

APPROVAL

Signed: _____________________________ Date: _____________________________
AKRF Project Director

Signed: _____________________________ Date: _____________________________
AKRF Health and Safety Officer

Below is an affidavit that must be signed by all workers who enter the Site. A copy of the HASP must be on-site at all times and will be kept by the SSO.

AFFIDAVIT

I, ______________________ (name), of ________________(company name), have read the Health and Safety Plan (HASP) for the New York Methodist Hospital – Proposed Ambulatory Care Facility site. I agree to conduct all on-site work in accordance with the requirements set forth in this HASP and understand that failure to comply with this HASP could lead to my removal from the Site.

Signed: _____________________________ Company: _____________________________ Date: __________

Signed: _____________________________ Company: _____________________________ Date: __________
FIGURE 1
HOSPITAL ROUTE MAP
APPENDIX A

POTENTIAL HEALTH EFFECTS FROM ON-SITE CONTAMINANTS
This fact sheet answers the most frequently asked health questions (FAQs) about tetrachloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Tetrachloroethylene is a manufactured chemical used for dry cleaning and metal degreasing. Exposure to very high concentrations of tetrachloroethylene can cause dizziness, headaches, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death. Tetrachloroethylene has been found in at least 771 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is tetrachloroethylene?
(Pronounced "tet'ra-klor'ë ò-ëth'é-lën'")
Tetrachloroethylene is a manufactured chemical that is widely used for dry cleaning of fabrics and for metal-degreasing. It is also used to make other chemicals and is used in some consumer products.
Other names for tetrachloroethylene include perchloroethylene, PCE, and tetrachloroethene. It is a nonflammable liquid at room temperature. It evaporates easily into the air and has a sharp, sweet odor. Most people can smell tetrachloroethylene when it is present in the air at a level of 1 part tetrachloroethylene per million parts of air (1 ppm) or more, although some can smell it at even lower levels.

How might I be exposed to tetrachloroethylene?
- When you bring clothes from the dry cleaners, they will release small amounts of tetrachloroethylene into the air.
- When you drink water containing tetrachloroethylene, you are exposed to it.

How can tetrachloroethylene affect my health?
High concentrations of tetrachloroethylene (particularly in closed, poorly ventilated areas) can cause dizziness, headache, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death.
Irritation may result from repeated or extended skin contact with it. These symptoms occur almost entirely in work (or hobby) environments when people have been accidentally exposed to high concentrations or have intentionally used tetrachloroethylene to get a “high.”

In industry, most workers are exposed to levels lower than those causing obvious nervous system effects. The health effects of breathing in air or drinking water with low levels of tetrachloroethylene are not known.
Results from some studies suggest that women who work in dry cleaning industries where exposures to tetrachloroethy-
TETRACHLOROETHYLENE
CAS # 127-18-4

ToxFaqs Internet home page via WWW is http://www.atsdr.cdc.gov/toxfaq.html

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFaqs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

ene can be quite high may have more menstrual problems and spontaneous abortions than women who are not exposed. However, it is not known if tetrachloroethylene was responsible for these problems because other possible causes were not considered.

Results of animal studies, conducted with amounts much higher than those that most people are exposed to, show that tetrachloroethylene can cause liver and kidney damage. Exposure to very high levels of tetrachloroethylene can be toxic to the unborn pups of pregnant rats and mice. Changes in behavior were observed in the offspring of rats that breathed high levels of the chemical while they were pregnant.

How likely is tetrachloroethylene to cause cancer?

The Department of Health and Human Services (DHHS) has determined that tetrachloroethylene may reasonably be anticipated to be a carcinogen. Tetrachloroethylene has been shown to cause liver tumors in mice and kidney tumors in male rats.

Is there a medical test to show whether I’ve been exposed to tetrachloroethylene?

One way of testing for tetrachloroethylene exposure is to measure the amount of the chemical in the breath, much the same way breath-alcohol measurements are used to determine the amount of alcohol in the blood.

Because it is stored in the body’s fat and slowly released into the bloodstream, tetrachloroethylene can be detected in the breath for weeks following a heavy exposure.

Tetrachloroethylene and trichloroacetic acid (TCA), a breakdown product of tetrachloroethylene, can be detected in the blood. These tests are relatively simple to perform. These tests aren’t available at most doctors’ offices, but can be performed at special laboratories that have the right equipment.

Because exposure to other chemicals can produce the same breakdown products in the urine and blood, the tests for breakdown products cannot determine if you have been exposed to tetrachloroethylene or the other chemicals.

Has the federal government made recommendations to protect human health?

The EPA maximum contaminant level for the amount of tetrachloroethylene that can be in drinking water is 0.005 milligrams tetrachloroethylene per liter of water (0.005 mg/L).

The Occupational Safety and Health Administration (OSHA) has set a limit of 100 ppm for an 8-hour workday over a 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that tetrachloroethylene be handled as a potential carcinogen and recommends that levels in workplace air should be as low as possible.

Glossary
Carcinogen: A substance with the ability to cause cancer.
CAS: Chemical Abstracts Service.
Milligram (mg): One thousandth of a gram.
Nonflammable: Will not burn.

References
This ToxFaqs information is taken from the 1997 Toxicological Profile for Tetrachloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.
This fact sheet answers the most frequently asked health questions (FAQs) about trichloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Trichloroethylene is a colorless liquid which is used as a solvent for cleaning metal parts. Drinking or breathing high levels of trichloroethylene may cause nervous system effects, liver and lung damage, abnormal heartbeat, coma, and possibly death. Trichloroethylene has been found in at least 852 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What is trichloroethylene?
Trichloroethylene (TCE) is a nonflammable, colorless liquid with a somewhat sweet odor and a sweet, burning taste. It is used mainly as a solvent to remove grease from metal parts, but it is also an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers.

Trichloroethylene is not thought to occur naturally in the environment. However, it has been found in underground water sources and many surface waters as a result of the manufacture, use, and disposal of the chemical.

What happens to trichloroethylene when it enters the environment?
- Trichloroethylene dissolves a little in water, but it can remain in ground water for a long time.
- Trichloroethylene quickly evaporates from surface water, so it is commonly found as a vapor in the air.
- Trichloroethylene evaporates less easily from the soil than from surface water. It may stick to particles and remain for a long time.
- Trichloroethylene may stick to particles in water, which will cause it to eventually settle to the bottom sediment.
- Trichloroethylene does not build up significantly in plants and animals.

How might I be exposed to trichloroethylene?
- Breathing air in and around the home which has been contaminated with trichloroethylene vapors from shower water or household products such as spot removers and typewriter correction fluid.
- Drinking, swimming, or showering in water that has been contaminated with trichloroethylene.
- Contact with soil contaminated with trichloroethylene, such as near a hazardous waste site.
- Contact with the skin or breathing contaminated air while manufacturing trichloroethylene or using it at work to wash paint or grease from skin or equipment.

How can trichloroethylene affect my health?
Breathing small amounts may cause headaches, lung irritation, dizziness, poor coordination, and difficulty concentrating.

Breathing large amounts of trichloroethylene may cause impaired heart function, unconsciousness, and death. Breathing it for long periods may cause nerve, kidney, and liver damage.
TRICHLOROETHYLENE
CAS # 79-01-6

Drinking large amounts of trichloroethylene may cause nausea, liver damage, unconsciousness, impaired heart function, or death.

Drinking small amounts of trichloroethylene for long periods may cause liver and kidney damage, impaired immune system function, and impaired fetal development in pregnant women, although the extent of some of these effects is not yet clear.

Skin contact with trichloroethylene for short periods may cause skin rashes.

How likely is trichloroethylene to cause cancer?

Some studies with mice and rats have suggested that high levels of trichloroethylene may cause liver, kidney, or lung cancer. Some studies of people exposed over long periods to high levels of trichloroethylene in drinking water or in workplace air have found evidence of increased cancer. Although, there are some concerns about the studies of people who were exposed to trichloroethylene, some of the effects found in people were similar to effects in animals.

In its 9th Report on Carcinogens, the National Toxicology Program (NTP) determined that trichloroethylene is “reasonably anticipated to be a human carcinogen.” The International Agency for Research on Cancer (IARC) has determined that trichloroethylene is “probably carcinogenic to humans.”

Is there a medical test to show whether I’ve been exposed to trichloroethylene?

If you have recently been exposed to trichloroethylene, it can be detected in your breath, blood, or urine. The breath test, if it is performed soon after exposure, can tell if you have been exposed to even a small amount of trichloroethylene.

Exposure to larger amounts is assessed by blood and urine tests, which can detect trichloroethylene and many of its breakdown products for up to a week after exposure. However, exposure to other similar chemicals can produce the same breakdown products, so their detection is not absolute proof of exposure to trichloroethylene. This test isn’t available at most doctors’ offices, but can be done at special laboratories that have the right equipment.

Has the federal government made recommendations to protect human health?

The EPA has set a maximum contaminant level for trichloroethylene in drinking water at 0.005 milligrams per liter (0.005 mg/L) or 5 parts of TCE per billion parts water.

The EPA has also developed regulations for the handling and disposal of trichloroethylene.

The Occupational Safety and Health Administration (OSHA) has set an exposure limit of 100 parts of trichloroethylene per million parts of air (100 ppm) for an 8-hour workday, 40-hour workweek.

Glossary

Carcinogenicity: The ability of a substance to cause cancer.
CAS: Chemical Abstracts Service.
Evaporate: To change into a vapor or gas.
Milligram (mg): One thousandth of a gram.
Nonflammable: Will not burn.
ppm: Parts per million.
Sediment: Mud and debris that have settled to the bottom of a body of water.
Solvent: A chemical that dissolves other substances.

References

This ToxFAQs information is taken from the 1997 Toxicological Profile for Trichloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs™ Internet address is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.
This fact sheet answers the most frequently asked health questions (FAQs) about fuel oils. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Fuel oils are liquid mixtures produced from petroleum, and their use mostly involves burning them as fuels. Drinking or breathing fuel oils may cause nausea or nervous system effects. However, exposure under normal use conditions is not likely to be harmful. Fuel oils have been found in at least 26 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What are fuel oils?
(Pronounced fyoozl oz)

Fuel oils are a variety of yellowish to light brown liquid mixtures that come from crude petroleum. Some chemicals found in fuel oils may evaporate easily, while others may more easily dissolve in water.

Fuel oils are produced by different petroleum refining processes, depending on their intended uses. Fuel oils may be used as fuel for engines, lamps, heaters, furnaces, and stoves, or as solvents.

Some commonly found fuel oils include kerosene, diesel fuel, jet fuel, range oil, and home heating oil. These fuel oils differ from one another by their hydrocarbon compositions, boiling point ranges, chemical additives, and uses.

What happens to fuel oils when they enter the environment?

- Some chemicals found in fuel oils may evaporate into the air from open containers or contaminated soil or water.
- Some chemicals found in fuel oils may dissolve in water after spills to surface waters or leaks from underground storage tanks.
- Some chemicals found in fuel oils may stick to particles in water, which will eventually cause them to settle to the bottom sediment.
- Some of the chemicals found in fuel oils may be broken down slowly in air, water, and soil by sunlight or small organisms.
- Some of the chemicals found in fuel oils may build up significantly in plants and animals.

How might I be exposed to fuel oils?

- Using a home kerosene heater or stove, or using fuel oils at work.
- Breathing air in home or building basements that has been contaminated with fuel oil vapors entering from the soil.
- Drinking or swimming in water that has been contaminated with fuel oils from a spill or a leaking underground storage tank.
- Touching soil contaminated with fuel oils.
- Using fuel oils to wash paint or grease from skin or equipment.

How can fuel oils affect my health?

Little information is available about the health effects that may be caused by fuel oils. People who use kerosene...
stoves for cooking do not seem to have any health problems related to their exposure.

Breathing some fuel oils for short periods may cause nausea, eye irritation, increased blood pressure, headache, light-headedness, loss of appetite, poor coordination, and difficulty concentrating. Breathing diesel fuel vapors for long periods may cause kidney damage and lower your blood's ability to clot.

Drinking small amounts of kerosene may cause vomiting, diarrhea, coughing, stomach swelling and cramps, drowsiness, restlessness, painful breathing, irritability, and unconsciousness. Drinking large amounts of kerosene may cause convulsions, coma, or death. Skin contact with kerosene for short periods may cause itchy, red, sore, or peeling skin.

How likely are fuel oils to cause cancer?

The International Agency for Research on Cancer (IARC) has determined that some fuel oils (heavy) may possibly cause cancer in humans, but for other fuel oils (light) there is not enough information to make a determination. IARC has also determined that occupational exposures to fuel oils during petroleum refining are probably carcinogenic in humans.

Some studies with mice have suggested that repeated contact with fuel oils may cause liver or skin cancer. However, other mouse studies have found this not to be the case. No studies are available in other animals or in people on the carcinogenic effects of fuel oils.

Is there a medical test to show whether I’ve been exposed to fuel oils?

There is no medical test that shows if you have been exposed to fuel oils. Tests are available to determine if some of the chemicals commonly found in fuel oils are in your blood. However, the presence of these chemicals in blood may not necessarily mean that you have been exposed to fuel oils.

Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) and the Air Force Office of Safety and Health (AFOSH) have set a permissible exposure level (PEL) of 400 parts of petroleum distillates per million parts of air (400 ppm) for an 8-hour workday, 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that average workplace air levels not exceed 350 milligrams of petroleum distillates per cubic meter of air (350 mg/m³) for a 40-hour workweek.

The Department of Transportation (DOT) lists fuel oils as hazardous materials and, therefore, regulates their transportation.

Glossary

- Carcinogenic: Able to cause cancer.
- CAS: Chemical Abstracts Service.
- Evaporate: To change into a vapor or a gas.
- Hydrocarbon: Any compound made up of hydrogen and carbon.
- Milligram (mg): One thousandth of a gram.
- ppm: Parts per million.
- Sediment: Mud and debris that have settled to the bottom of a body of water.

References

This fact sheet answers the most frequently asked health questions (FAQs) about lead. For more information, call the ATSDR Information Center at 1-800-232-4636. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to lead can happen from breathing workplace air or dust, eating contaminated foods, or drinking contaminated water. Children can be exposed from eating lead-based paint chips or playing in contaminated soil. Lead can damage the nervous system, kidneys, and reproductive system. Lead has been found in at least 1,272 of the 1,684 National Priority List sites identified by the Environmental Protection Agency (EPA).

What is lead?
Lead is a naturally occurring bluish-gray metal found in small amounts in the earth’s crust. Lead can be found in all parts of our environment. Much of it comes from human activities including burning fossil fuels, mining, and manufacturing.

Lead has many different uses. It is used in the production of batteries, ammunition, metal products (solder and pipes), and devices to shield X-rays. Because of health concerns, lead from paints and ceramic products, caulking, and pipe solder has been dramatically reduced in recent years. The use of lead as an additive to gasoline was banned in 1996 in the United States.

What happens to lead when it enters the environment?
- Lead itself does not break down, but lead compounds are changed by sunlight, air, and water.
- When lead is released to the air, it may travel long distances before settling to the ground.
- Once lead falls onto soil, it usually sticks to soil particles.
- Movement of lead from soil into groundwater will depend on the type of lead compound and the characteristics of the soil.

How might I be exposed to lead?
- Eating food or drinking water that contains lead. Water pipes in some older homes may contain lead solder. Lead can leach out into the water.
- Spending time in areas where lead-based paints have been used and are deteriorating. Deteriorating lead paint can contribute to lead dust.
- Working in a job where lead is used or engaging in certain hobbies in which lead is used, such as making stained glass.
- Using health-care products or folk remedies that contain lead.

How can lead affect my health?
The effects of lead are the same whether it enters the body through breathing or swallowing. Lead can affect almost every organ and system in your body. The main target for lead toxicity is the nervous system, both in adults and children. Long-term exposure of adults can result in decreased performance in some tests that measure functions of the nervous system. It may also cause weakness in fingers, wrists, or ankles. Lead exposure also causes small increases in blood pressure, particularly in middle-aged and older people and can cause anemia. Exposure to high lead levels can severely damage the brain and kidneys in adults or children and ultimately cause death. In pregnant women, high levels of exposure to lead may cause miscarriage. High-level exposure in men can damage the organs responsible for sperm production.

How likely is lead to cause cancer?
We have no conclusive proof that lead causes cancer in humans. Kidney tumors have developed in rats and mice that had been given large doses of some kind of lead compounds. The Department of Health and Human Services...
(DHHS) has determined that lead and lead compounds are reasonably anticipated to be human carcinogens and the EPA has determined that lead is a probable human carcinogen. The International Agency for Research on Cancer (IARC) has determined that inorganic lead is probably carcinogenic to humans and that there is insufficient information to determine whether organic lead compounds will cause cancer in humans.

How can lead affect children?

Small children can be exposed by eating lead-based paint chips, chewing on objects painted with lead-based paint, or swallowing house dust or soil that contains lead. Children are more vulnerable to lead poisoning than adults. A child who swallows large amounts of lead may develop blood anemia, severe stomachache, muscle weakness, and brain damage. If a child swallows smaller amounts of lead, much less severe effects on blood and brain function may occur. Even at much lower levels of exposure, lead can affect a child’s mental and physical growth.

Exposure to lead is more dangerous for young and unborn children. Unborn children can be exposed to lead through their mothers. Harmful effects include premature births, smaller babies, decreased mental ability in the infant, learning difficulties, and reduced growth in young children. These effects are more common if the mother or baby was exposed to high levels of lead. Some of these effects may persist beyond childhood.

How can families reduce the risks of exposure to lead?

- Avoid exposure to sources of lead.
- Do not allow children to chew or mouth surfaces that may have been painted with lead-based paint.
- If you have a water lead problem, run or flush water that has been standing overnight before drinking or cooking with it.
- Some types of paints and pigments that are used as make-up or hair coloring contain lead. Keep these kinds of products away from children.
- If your home contains lead-based paint or you live in an area contaminated with lead, wash children’s hands and faces often to remove lead dusts and soil, and regularly clean the house of dust and tracked in soil.

Is there a medical test to determine whether I’ve been exposed to lead?

A blood test is available to measure the amount of lead in your blood and to estimate the amount of your recent exposure to lead. Blood tests are commonly used to screen children for lead poisoning. Lead in teeth or bones can be measured by X-ray techniques, but these methods are not widely available. Exposure to lead also can be evaluated by measuring erythrocyte protoporphyrin (EP) in blood samples. EP is a part of red blood cells known to increase when the amount of lead in the blood is high. However, the EP level is not sensitive enough to identify children with elevated blood lead levels below about 25 micrograms per deciliter (µg/dL). These tests usually require special analytical equipment that is not available in a doctor's office. However, your doctor can draw blood samples and send them to appropriate laboratories for analysis.

Has the federal government made recommendations to protect human health?

The Centers for Disease Control and Prevention (CDC) recommends that states test children at ages 1 and 2 years. Children should be tested at ages 3–6 years if they have never been tested for lead, if they receive services from public assistance programs for the poor such as Medicaid or the Supplemental Food Program for Women, Infants, and Children, if they live in a building or frequently visit a house built before 1950; if they visit a home (house or apartment) built before 1978 that has been recently remodeled; and/or if they have a brother, sister, or playmate who has had lead poisoning. CDC considers a blood lead level of 10 µg/dL to be a level of concern for children.

EPA limits lead in drinking water to 15 µg per liter.

References

This fact sheet answers the most frequently asked health questions (FAQs) about mercury. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It’s important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to mercury occurs from breathing contaminated air, ingesting contaminated water and food, and having dental and medical treatments. Mercury, at high levels, may damage the brain, kidneys, and developing fetus. This chemical has been found in at least 714 of 1,467 National Priorities List sites identified by the Environmental Protection Agency.

What is mercury?
(Pronounced mûr’kyə-rə)

Mercury is a naturally occurring metal which has several forms. The metallic mercury is a shiny, silver-white, odorless liquid. If heated, it is a colorless, odorless gas.

Mercury combines with other elements, such as chlorine, sulfur, or oxygen, to form inorganic mercury compounds or “salts,” which are usually white powders or crystals. Mercury also combines with carbon to make organic mercury compounds. The most common one, methylmercury, is produced mainly by microscopic organisms in the water and soil. More mercury in the environment can increase the amounts of methylmercury that these small organisms make.

Metallic mercury is used to produce chlorine gas and caustic soda, and is also used in thermometers, dental fillings, and batteries. Mercury salts are sometimes used in skin lightening creams and as antiseptic creams and ointments.

What happens to mercury when it enters the environment?

- Inorganic mercury (metallic mercury and inorganic mercury compounds) enters the air from mining ore deposits, burning coal and waste, and from manufacturing plants.
- It enters the water or soil from natural deposits, disposal of wastes, and volcanic activity.

- Methylmercury may be formed in water and soil by small organisms called bacteria.
- Methylmercury builds up in the tissues of fish. Larger and older fish tend to have the highest levels of mercury.

How might I be exposed to mercury?

- Eating fish or shellfish contaminated with methylmercury.
- Breathing vapors in air from spills, incinerators, and industries that burn mercury-containing fuels.
- Release of mercury from dental work and medical treatments.
- Breathing contaminated workplace air or skin contact during use in the workplace (dental, health services, chemical, and other industries that use mercury).
- Practicing rituals that include mercury.

How can mercury affect my health?

The nervous system is very sensitive to all forms of mercury. Methylmercury and metallic mercury vapors are more harmful than other forms, because more mercury in these forms reaches the brain. Exposure to high levels of metallic, inorganic, or organic mercury can permanently damage the brain, kidneys, and developing fetus. Effects on brain functioning may result in irritability, shyness, tremors, changes in vision or hearing, and memory problems.

Short-term exposure to high levels of metallic mercury vapors may cause effects including lung damage, nausea,
MERCURY
CAS # 7439-97-6

ToxFaqs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFaqs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

rooms where liquid mercury has been used.

How likely is mercury to cause cancer?

There are inadequate human cancer data available for all forms of mercury. Mercuric chloride has caused increases in several types of tumors in rats and mice, and methylmercury has caused kidney tumors in male mice. The EPA has determined that mercuric chloride and methylmercury are possible human carcinogens.

How can mercury affect children?

Very young children are more sensitive to mercury than adults. Mercury in the mother’s body passes to the fetus and may accumulate there. It can also pass to a nursing infant through breast milk. However, the benefits of breast feeding may be greater than the possible adverse effects of mercury in breast milk.

Mercury’s harmful effects that may be passed from the mother to the fetus include brain damage, mental retardation, incoordination, blindness, seizures, and inability to speak. Children poisoned by mercury may develop problems of their nervous and digestive systems, and kidney damage.

How can families reduce the risk of exposure to mercury?

Carefully handle and dispose of products that contain mercury, such as thermometers or fluorescent light bulbs. Do not vacuum up spilled mercury, because it will vaporize and increase exposure. If a large amount of mercury has been spilled, contact your health department. Teach children not to play with shiny, silver liquids.

Properly dispose of older medicines that contain mercury. Keep all mercury-containing medicines away from children.

Pregnant women and children should keep away from

vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye irritation.

Is there a medical test to show whether I’ve been exposed to mercury?

Tests are available to measure mercury levels in the body. Blood or urine samples are used to test for exposure to metallic mercury and to inorganic forms of mercury. Mercury in whole blood or in scalp hair is measured to determine exposure to methylmercury. Your doctor can take samples and send them to a testing laboratory.

Has the federal government made recommendations to protect human health?

The EPA has set a limit of 2 parts of mercury per billion parts of drinking water (2 ppb).

The Food and Drug Administration (FDA) has set a maximum permissible level of 1 part of methylmercury in a million parts of seafood (1 ppm).

The Occupational Safety and Health Administration (OSHA) has set limits of 0.1 milligram of organic mercury per cubic meter of workplace air (0.1 mg/m³) and 0.05 mg/m³ of metallic mercury vapor for 8-hour shifts and 40-hour work weeks.

References

This fact sheet answers the most frequently asked health questions (FAQs) about polycyclic aromatic hydrocarbons (PAHs). For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Exposure to polycyclic aromatic hydrocarbons usually occurs by breathing air contaminated by wild fires or coal tar, or by eating foods that have been grilled. PAHs have been found in at least 600 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

What are polycyclic aromatic hydrocarbons?

(Pronounced pōl′ī-sē′klīk ār′ə-māt′īk ħi′drō-kar′bōnz)

Polycyclic aromatic hydrocarbons (PAHs) are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. PAHs are usually found as a mixture containing two or more of these compounds, such as soot.

Some PAHs are manufactured. These pure PAHs usually exist as colorless, white, or pale yellow-green solids. PAHs are found in coal tar, crude oil, creosote, and roofing tar, but a few are used in medicines or to make dyes, plastics, and pesticides.

What happens to PAHs when they enter the environment?

- PAHs enter the air mostly as releases from volcanoes, forest fires, burning coal, and automobile exhaust.
- PAHs can occur in air attached to dust particles.
- Some PAH particles can readily evaporate into the air from soil or surface waters.
- PAHs can break down by reacting with sunlight and other chemicals in the air, over a period of days to weeks.
- PAHs enter water through discharges from industrial and wastewater treatment plants.
- Most PAHs do not dissolve easily in water. They stick to solid particles and settle to the bottoms of lakes or rivers.
- Microorganisms can break down PAHs in soil or water after a period of weeks to months.
- In soils, PAHs are most likely to stick tightly to particles; certain PAHs move through soil to contaminate underground water.
- PAH contents of plants and animals may be much higher than PAH contents of soil or water in which they live.

How might I be exposed to PAHs?

- Breathing air containing PAHs in the workplace of coking, coal-tar, and asphalt production plants; smokehouses; and municipal trash incineration facilities.
- Breathing air containing PAHs from cigarette smoke, wood smoke, vehicle exhausts, asphalt roads, or agricultural burn smoke.
- Coming in contact with air, water, or soil near hazardous waste sites.
- Eating grilled or charred meats; contaminated cereals, flour, bread, vegetables, fruits, meats; and processed or pickled foods.
- Drinking contaminated water or cow’s milk.
POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop E-29, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 404-498-0093. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.

How can PAHs affect my health?

Mice that were fed high levels of one PAH during pregnancy had difficulty reproducing and so did their offspring. These offspring also had higher rates of birth defects and lower body weights. It is not known whether these effects occur in people.

Animal studies have also shown that PAHs can cause harmful effects on the skin, body fluids, and ability to fight disease after both short- and long-term exposure. But these effects have not been seen in people.

How likely are PAHs to cause cancer?

The Department of Health and Human Services (DHHS) has determined that some PAHs may reasonably be expected to be carcinogens.

Some people who have breathed or touched mixtures of PAHs and other chemicals for long periods of time have developed cancer. Some PAHs have caused cancer in laboratory animals when they breathed air containing them (lung cancer), ingested them in food (stomach cancer), or had them applied to their skin (skin cancer).

Is there a medical test to show whether I’ve been exposed to PAHs?

In the body, PAHs are changed into chemicals that can attach to substances within the body. There are special tests that can detect PAHs attached to these substances in body tissues or blood. However, these tests cannot tell whether any health effects will occur or find out the extent or source of your exposure to the PAHs. The tests aren’t usually available in your doctor’s office because special equipment is needed to conduct them.

Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) has set a limit of 0.2 milligrams of PAHs per cubic meter of air (0.2 mg/m³). The OSHA Permissible Exposure Limit (PEL) for mineral oil mist that contains PAHs is 5 mg/m³ averaged over an 8-hour exposure period.

The National Institute for Occupational Safety and Health (NIOSH) recommends that the average workplace air levels for coal tar products not exceed 0.1 mg/m³ for a 10-hour workday, within a 40-hour workweek. There are other limits for workplace exposure for things that contain PAHs, such as coal, coal tar, and mineral oil.

GLOSSARY

Carcinogen: A substance that can cause cancer.
Ingest: Take food or drink into your body.

REFERENCES

APPENDIX B

WEST NILE VIRUS/ST. LOUIS ENCEPHALITIS PREVENTION
WEST NILE VIRUS/ST. LOUIS ENCEPHALITIS PREVENTION

The following section is based upon information provided by the CDC Division of Vector-Borne Infectious Diseases. Symptoms of West Nile Virus include fever, headache, and body aches, occasionally with skin rash and swollen lymph glands, with most infections being mild. More severe infection may be marked by headache, high fever, neck stiffness, stupor, disorientation, coma, tremors, convulsions, muscle weakness, paralysis, and, rarely, death. Most infections of St. Louis encephalitis are mild without apparent symptoms other than fever with headache. More severe infection is marked by headache, high fever, neck stiffness, stupor, disorientation, coma, tremors, occasional convulsions (especially infants) and spastic (but rarely flaccid) paralysis. The only way to avoid infection of West Nile Virus and St. Louis encephalitis is to avoid mosquito bites. To reduce the chance of mosquito contact:

- Stay indoors at dawn, dusk, and in the early evening.
- Wear long-sleeved shirts and long pants whenever you are outdoors.
- Spray clothing with repellents containing permethrin or DEET (N, N-diethyl-meta-toluamide), since mosquitoes may bite through thin clothing.
- Apply insect repellent sparingly to exposed skin. An effective repellent will contain 35% DEET. DEET in high concentrations (greater than 35%) provides no additional protection.
- Repellents may irritate the eyes and mouth.
- Whenever you use an insecticide or insect repellent, be sure to read and follow the manufacturer's directions for use, as printed on the product.
APPENDIX C
REPORT FORMS
WEEKLY SAFETY REPORT FORM

Week Ending: _____________ Project Name/Number: ____________________________

Report Date: _____________ Project Manager Name: ____________________________

Summary of any violations of procedures occurring that week:

__

__

__

Summary of any job related injuries, illnesses, or near misses that week:

__

__

__

Summary of air monitoring data that week (include and sample analyses, action levels exceeded, and actions taken):

__

__

__

Comments:

__

__

__

Name: ______________________ Company: ________________________________

Signature: ___________________ Title: ________________________________
INCIDENT REPORT FORM

Date of Report: __

Injured: __

Employer: __

Site: ___________________________ Site Location: __________________________

Report Prepared By: __ __________________

Signature Title

ACCIDENT/INCIDENT CATEGORY (check all that applies)

___ Injury ___ Illness ___ Near Miss

___ Property Damage ___ Fire ___ Chemical Exposure

___ On-site Equipment ___ Motor Vehicle ___ Electrical

___ Mechanical ___ Spill ___ Other

DATE AND TIME OF ACCIDENT/INCIDENT: Narrative report of Accident/Incident: Identify: 1) actions leading to or contributing to the accident/incident; 2) the accident/incident occurrence; and 3) actions following the accident/incident.

__

__

__

__

__

__

WITNESS TO ACCIDENT/INCIDENT:

Name: ___________________________ Company: ___________________________

Address: ___________________________ Address: ___________________________

Phone No.: ___________________________ Phone No.: ___________________________

Name: ___________________________ Company: ___________________________

Address: ___________________________ Address: ___________________________

Phone No.: ___________________________ Phone No.: ___________________________
INJURED - ILL:
Name: __________________ SSN: ________________________________
Address: __________________ Age: ________________________________

Length of Service: __________________ Time on Present Job: __________________
Time/Classification: __

SEVERITY OF INJURY OR ILLNESS:
____ Disabling ____ Non-disabling ____ Fatality
____ Medical Treatment ____ First Aid Only

ESTIMATED NUMBER OF DAYS AWAY FROM JOB: ____________________________

NATURE OF INJURY OR ILLNESS: _______________________________________
__

CLASSIFICATION OF INJURY:
__ Abrasions __ Dislocations __ Punctures
__ Bites __ Faint/Dizziness __ Radiation Burns
__ Blisters __ Fractures __ Respiratory Allergy
__ Bruises __ Frostbite __ Sprains
__ Chemical Burns __ Heat Burns __ Toxic Resp. Exposure
__ Cold Exposure __ Heat Exhaustion __ Toxic Ingestion
__ Concussion __ Heat Stroke __ Dermal Allergy
__ Lacerations

Part of Body Affected: __

Degree of Disability: ___

Date Medical Care was Received: __

Where Medical Care was Received: ___

Address (if off-site): ___

(If two or more injuries, record on separate sheets)
PROPERTY DAMAGE:
Description of Damage: __

Cost of Damage: $ __

ACCIDENT/INCIDENT LOCATION: __

ACCIDENT/INCIDENT ANALYSIS: Causative agent most directly related to accident/incident
(Object, substance, material, machinery, equipment, conditions)

__

__

__

Was weather a factor?: __

Unsafe mechanical/physical/environmental condition at time of accident/incident (Be specific):

__

__

Personal factors (Attitude, knowledge or skill, reaction time, fatigue):

__

ON-SITE ACCIDENTS/INCIDENTS:
Level of personal protection equipment required in Site Safety Plan:

__

Modifications:

__

Was injured using required equipment?:

__

If not, how did actual equipment use differ from plan?:

__
ACTION TAKEN TO PREVENT RECURRENCE: (Be specific. What has or will be done? When will it be done? Who is the responsible party to insure that the correction is made?)

ACCIDENT/INCIDENT REPORT REVIEWED BY:

SSO Name Printed
SSO Signature

OTHERS PARTICIPATING IN INVESTIGATION:

Signature
Title

Signature
Title

Signature
Title

ACCIDENT/INCIDENT FOLLOW-UP:

Date: ________________________________
Outcome of accident/incident: __

__

__

Physician’s recommendations: __

__

__

Date injured returned to work: ________________________________
Follow-up performed by: ________________________________

Signature
Title

ATTACH ANY ADDITIONAL INFORMATION TO THIS FORM
APPENDIX D

EMERGENCY HAND SIGNALS
EMERGENCY SIGNALS

In most cases, field personnel will carry portable radios for communication. If this is the case, a transmission that indicates an emergency will take priority over all other transmissions. All other site radios will yield the frequency to the emergency transmissions.

Where radio communications is not available, the following air-horn and/or hand signals will be used:

EMERGENCY HAND SIGNALS

OUT OF AIR, CAN’T BREATHE!

Hand gripping throat

LEAVE AREA IMMEDIATELY, NO DEBATE!

(No Picture) Grip partner’s wrist or place both hands around waist

NEED ASSISTANCE!

Hands on top of head

OKAY! – I’M ALL RIGHT!

- I UNDERSTAND!

Thumbs up

NO! - NEGATIVE!

Thumbs down